Astronomia
Astronomia, que etimologicamente significa "lei das estrelas" com origem grego: (άστρο + νόμος)povos que acreditavam existir um ensinamento vindo das estrelas, é hoje uma ciência que se abre num leque de categorias complementares aos interesses da física, da matemática e da biologia. Envolve diversas observações procurando respostas aos fenômenos físicos que ocorrem dentro e fora da Terra bem como em sua atmosfera e estuda as origens, evolução e propriedades físicas e químicas de todos os objectos que podem ser observados no céu (e estão além da Terra), bem como todos os processos que os envolvem. Observações astronômicas não são relevantes apenas para a astronomia, mas também fornecem informações essenciais para a verificação de teorias fundamentais da física, tais como a teoria da relatividade geral.
Astronomia observacional
Na astronomia, a principal forma de obter informação é através da detecção e análise da luz visível ou outras regiões da radiação eletromagnética. Mas a informação é adquirida também por raios cósmicos, neutrinos, e, no futuro próximo, ondas gravitacionais (veja LIGO e LISA).
Uma divisão tradicional da astronomia é dada pela faixa do espectro eletromagnético observado. Algumas partes do espectro podem ser observadas da superfície da Terra, enquanto outras partes só são observáveis de grandes altitudes ou no espaço.
Radioastronomia
- A radioastronomia estuda a radiação com comprimento de onda maior que aproximadamente 1 milímetro. A radioastronomia é diferente da maioria das outras formas de astronomia observacional pelo fato de as ondas de rádio observáveis poderem ser tratadas como ondas ao invés de fótons discretos. Com isso, é relativamente mais fácil de medir a amplitude e a fase das ondas de rádio.
Apesar de algumas ondas de rádio serem produzidas por objetos astronômicos na forma de radiação térmica, a maior parte das emissões de rádio que são observadas da Terra são vistas na forma de radiação síncrotron, que é produzida quando elétrons ou outras partículas eletricamente carregadas descrevem uma trajetória curva em um campo magnético. Adicionalmente, diversas linhas espectrais produzidas por gás interestelar, notadamente a linha espectral do hidrogênio de 21 cm, são observáveis no comprimento de onda de rádio.
Uma grande variedade de objetos são observáveis no comprimento de onda de rádio, incluindo supernovas, gás interestelar, pulsares e núcleos de galáxias ativas.
Astronomia infravermelha
- A astronomia infravermelha liga com a detecção e análise da radiação infravermelha (comprimentos de onda maiores que a luz vermelha). Exceto por comprimentos de onda mais próximas à luz visível, a radiação infravermelha é na maior parte absorvida pela atmosfera, e a atmosfera produz emissão infravermelha numa quantidade significante. Consequentemente, observatórios de infravermelho precisam estar localizados em lugares altos e secos, ou no espaço.
O espectro infravermelho é útil para estudar objetos que são muito frios para emitir luz visível, como os planetas e discos circunstrelares. Comprimentos de onda infravermelha maior podem também penetrar nuvens de poeira que bloqueiam a luz visível, permitindo a observação de estrelas jovens em nuvens moleculares e o centro de galáxias. Algumas moléculas radiam fortemente no infravermelho, e isso pode ser usado para estudar a química no espaço, assim como detectar água em cometas.
Astronomia óptica
- Historicamente, a astronomia óptica (também chamada de astronomia da luz visível) é a forma mais antiga da astronomia. Imagens ópticas eram originalmente desenhadas à mão. No final do século XIX e na maior parte do século XX as imagens eram criadas usando equipamentos fotográficos. Imagens modernas são criadas usando detectores digitais, principalmente detectores usando dispositivos de cargas acoplados (CCDs). Apesar da luz visível estender de aproximadamente 4000 Å até 7000 Å (400 nm até 700 nm), o mesmo equipamento usado nesse comprimento de onda é também usado para observar radição de luz visível próxima a ultravioleta e infravermelho.
Astronomia ultravioleta
- A astronomia ultravioleta é normalmente usada para se referir a observações no comprimento de onda ultravioleta, aproximadamente entre 100 e 3200 Å (10 e 320 nm).A luz nesse comprimento de onda é absorvida pela atmosfera da Terra, então as observações devem ser feitas na atmosfera superior ou no espaço.
A astronomia ultravioleta é mais utilizada para o estudo da radiação térmica e linhas de emissão espectral de estrelas azul quente (Estrela OB) que são muito brilhantes nessa banda de onda. Isso inclui estrelas azuis em outras galáxias, que têm sido alvos de várias pesquisas nesta área. Outros objetos normalmente observados incluem a nebulosa planetária, remanescente de supernova, e núcleos de galáxias ativas. Entretanto, a luz ultravioleta é facilmente absorvida pela poeira interestelar, e as medições da luz ultravioleta desses objetos precisam ser corrigidas.
Astronomia de raios-X
Fontes de raio-X notáveis incluem binário de raio X, pulsares, remanescentes de supernovas, galáxias elípticas, aglomerados de galáxias e núcleos galáticos ativos.
Astronomia de raios gama
- A astronomia de raios gama é o estudo de objetos astronômicos que usam os menores comprimentos de onda do espectro eletromagnético. Os raios gama podem ser observados diretamente por satélites como o observatório de raios Gama Compton ou por telescópios especializados chamados Cherenkov.Os telescópios Cherenkov não detectam os raios gama diretamente mas detectam flasses de luz visível produzidos quando os raios gama são absorvidos pela atmosfera da Terra.
A maioria das fontes emissoras de raio gama são na verdade Erupções de raios gama, objetos que produzem radiação gama apenas por poucos milisegundos a até milhares de segundos antes de desaparecerem. Apenas 10% das fontes de raio gama são fontes não-transendentes, incluindo pulsares, estrelas de nêutrons, e candidatos a buracos negros como núcleos galácticos ativos.
Astronomia solar
- A uma distância de oito minutos-luz, a estrela mais frequentemente estudada é o Sol, uma típica estrela anã da sequência principal da classe estrelar G2 V, com idade de aproximadamente 4,6 Gyr. O Sol não é considerado uma estrela variável, mas passa por mudanças periódicas em atividades conhecidas como ciclo solar. Isso é uma flutuação de 11 anos nos números de mancha solares. Manchas solares são regiões de temperatura abaixo da média que estão associadas a uma intensa atividade magnética.
O Sol tem aumentado constantemente de luminosidade no seu curso de vida, aumentando em 40% desde que se tornou uma estrela da sequência principal. O Sol também passa por mudanças periódicas de luminosidade que podem ter um impacto significativo na Terra. Por exemplo, se acredita que o mínimo de Maunder tenha causado a Pequena Idade do Gelo.
A superfície externa visível do Sol é chamada fotosfera. Acima dessa camada há uma fina região conhecida como cromosfera. Essa é envolvida por uma região de transição de temperaturas cada vez mais elevadas, e então pela super-quente corona.
No centro do Sol está a região do núcleo, um volume com temperatura e pressão suficientes para uma fusão nuclear ocorrer. Acima do núcleo está a zona de radiação, onde o plasma se converte o fluxo de energia através da radiação. As camadas externas formam uma zona de convecção onde o gáa material transporta a energia através do deslocamento físico do gás. Se acredita que essa zona de convecção cria a atividade magnética que gera as manchas solares.
Um vento solar de partículas de plasma corre constantemente para fora do Sol até que atinge a heliosfera. Esse vento solar interage com a magnetosfera da Terra para criar os cinturões de Van Allen, assim como a aurora onde as linhas dos campos magnéticos da Terra descendem até a atmosfera da Terra.
Dia do astrônomo
Recentemente foi instituído, no Estado do Rio de Janeiro, a data de 2 de dezembro como o Dia do Astrônomo. A data coincide com o aniversário do imperador Dom Pedro II, que era um conhecido incentivador da Astronomia.